SUSTAINABLE, FUNCTIONAL HYBRID AIR FILTER DESIGN

Assoc. Prof. Burçak K. Kayaoğlu¹; Dr. Berdan Kalav¹; Umut Burak Dalbudak²; Selahattin Onur³; Burcu Dadaş³; Atakan Gümüş²; Eylem Korkmaz² Istanbul Technical University, Textile Engineering Department¹; HASSAN R&D Center²; MERKAS R&D Center³

GRAPHICAL ABSTRACT & OBJECTIVES

- The goal of this Project is to obtain a nonwoven based filter material that is laminated with eco-friendly Ultraviolet (UV) radiation curing mechanism.
- Needlepunched (NP) and Air-Through-Bonded (ATB) nonwoven technologies are utilized to provide filtering against finer and coarser particles respectively.
- Elimination of volatile solvents and curing in fractions of seconds are the main advantages of employing UV radiation technology instead of conventional curing.

INTRODUCTION

- Nonwoven based filtering materials have increased in the last decade as health concerns increase. Needle-punched and Air-Through-Bonded nonwovens are laminated with each other through Ultraviolet curing mechanism rather than conventional curing.
- Nonwoven layers are binded with photopolymerization reactions in which monomers, oligomers, photoinitiators and reactive species are used. ATB nonwoven layer provides pre-filtering due to bigger pores where NP nonwoven layer provides fine filtration due to smaller pores.
- UV curing mechanism eliminates the need for drying tunnels that cause time and energy consumption in the manufacturing lines.
- UV curing mechanism is a novel, sustainable lamination method for combining nonwoven layers.

Hybdrid structure:

Combining nonwoven surface produced by Air-Through Bonding (ATB) method and nonwoven surface produced by Needle-Punched (NP) method with UV curing

Advantages: □ Disposable ☐ Healthy filtering □ Environmentally friendly

Table: Comparison of conventional and radiation curing methods [1].					
Properties	Properties Conventional Curing Radiation				
Physical Drying	Yes	No			
Chemical Crosslinking	Yes (up to binders)	Yes			
Volatile Solvents	Yes	No			
Drying Time	From minutes to days	In fractions of a second			

TESTING

In the testing of the hybrid air filter to be developed within the scope of the project, the methods specified in the following standards were applied:

- 1. Unit area mass: **EN 29073-1** [2].
- 2. Thickness: **ISO 9073 2** [3]
- 3. Air permeability: **NWSP 070.1R0 (20)** [4]
- 4. Tensile Strength and Elongation: **TS EN ISO 139**34-1 [5]
- 5. Tear Strength: **TS EN ISO 13937-2** [6]
- 6. Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size: **ASHRAE 52.2** [7]

PRODUCTION METHOD OF UV Formulation **NONWOVEN LAYERS** (m) Monomer Oligomer **⊠** CARDING **CARDING** Photo-initiator **☒** AIR-THROUGH BONDING **⋈** NEEDLE-PUNCHING Ink/coating Substrate **ATB** ⊠ **Bigger pore: pre-filtration NP** ⊠ Smaller pore: fine filtration

WORKS AND METHODS

LAMINATION METHOD OF NONWOVEN LAYERS Photopolymerization

Needle-punched

Coating of

Adhesive via

Lamination of ATB

UV	Light Hybrid Structure NP and ATB	
<u></u> →	Nonwoven	

Table: Expe	riment plan create	ed within the scope of the project.				
NO	Speed	Mercury-Gallium Lamp Energy	ATB Nonwoven	Needle-punched Nonwoven		
140	(m/min)	(watt/cm)				
1	10	80	35 g/m² PE/PP	%50/%50 3/1,5 den PET		
2	10	80	35 g/m² PE/PP	%80/%20 3/1,5 den PET		
3	10	80	50 g/m² PET/coPET	%50/%50 3/1,5 den PET		
4	10	80	50 g/m² PET/ coPET	%80/%20 3/1,5 den PET		
5	10	100	35 g/m² PE/PP	%50/%50 3/1,5 den PET		
6	10	100	35 g/m² PE/PP	%80/%20 3/1,5 den PET		
7	10	100	50 g/m² PET/coPET	%50/%50 3/1,5 den PET		
8	10	100	50 g/m² PET/coPET	%80/%20 3/1,5 den PET		
9	10	120	35 g/m² PE/PP	%50/%50 3/1,5 den PET		
10	10	120	35 g/m² PE/PP	%80/%20 3/1,5 den PET		
11	10	120	50 g/m² PET/coPET	%50/%50 3/1,5 den PET		
12	10	120	50 g/m ² PET/coPET	%80/%20 3/1,5 den PET		
13	15	80	35 g/m ² PE/PP	%50/%50 3/1,5 den PET		
14	15	80	35 g/m ² PE/PP	%80/%20 3/1,5 den PET		
15	15	80	50 g/m² PET/coPET	%50/%50 3/1,5 den PET		
16	15	80	50 g/m² PET/coPET	%80/%20 3/1,5 den PET		
17	15	100	35 g/m ² PE/PP	%50/%50 3/1,5 den PET		
18	15	100	35 g/m ² PE/PP	%80/%20 3/1,5 den PET		
19	15	100	50 g/m² PET/coPET	%50/%50 3/1,5 den PET		
20	15	100	50 g/m² PET/coPET	%80/%20 3/1,5 den PET		
21	15	120	35 g/m ² PE/PP	%50/%50 3/1,5 den PET		
22	15	120	35 g/m² PE/PP	%80/%20 3/1,5 den PET		
23	15	120	50 g/m² PET/coPET	%50/%50 3/1,5 den PET		
24	15	120	50 g/m² PET/coPET	%80/%20 3/1,5 den PET		
25	18	80	35 g/m² PE/PP	%50/%50 3/1,5 den PET		
26	18	80	35 g/m² PE/PP	%80/%20 3/1,5 den PET		
27	18	80	50 g/m² PET/coPET	%50/%50 3/1,5 den PET		
28	18	80	50 g/m² PET/coPET	%80/%20 3/1,5 den PET		
29	18	100	35 g/m² PE/PP	%50/%50 3/1,5 den PET		
30	18	100	35 g/m ² PE/PP	%80/%20 3/1,5 den PET		
31	18	100	50 g/m ² PET/coPET	%50/%50 3/1,5 den PET		
32	18	100	50 g/m ² PET/coPET	%80/%20 3/1,5 den PET		
33	18	120	35 g/m ² PE/PP	%50/%50 3/1,5 den PET		
34	18	120	35 g/m² PE/PP	%80/%20 3/1,5 den PET		
35	18	120	50 g/m² PET/coPET	%50/%50 3/1,5 den PET		
36	18	120	50 g/m² PET/coPET	%80/%20 3/1,5 den PET		

Prototype 37 and 38 are carried out in the final Work Package according to specified successful prototypes as seen above.

RESULTS & CONCLUSION

able: Mechanical strength properties of prototypes.							
Prototype No/Name	Tensile Elongation (%)		Tensile Strength (N/mm)		Tear Strength (N/mm)		
	CD	MD	CD	MD	CD	MD	
ATB: 50 g/m ² PET/coPET	68,5	16,1	0,1	0,5	1,1	1,6	
NP: %50/50 3/1,5 den PET	122,0	75,0	5,8	6,2	53,3	65,3	
Hybrid Structure: Prototype-37	120,1	70,1	7,4	6,1	52,1	55,4	
ATB: 50 g/m ² PET/coPET	68,5	16,1	0,1	0,5	1,1	1,6	
NP: %40/45/15 3/1,5/4 den PET/coPET	95,2	60,7	8,2	7,5	61,7	72,3	
Hybrid Structure: Prototype-38	90,1	57,3	9,3	7,2	60,8	61,9	

Hydrophobic treatment is applied to enhance the lamination of layers.

Table: Comparison of filtering results.								
Prototype	Particulate Efficiency (%)			-	Air Permeability	Air Flow		
	E1	E2	E3	MERV	(l/m²/s)	Resistance ("wg)		
Prototype-37	11	21	60	7	1200	0.05		
Prototype-38	17	28	59	7	987	0.03		

- □ The improvements have increased the filtration performance of particles with small particle sizes considerably, providing better filtration efficiency at low micron levels, resulting in more successful results.
- ☐ Since the resistance of prototype-38 is lower, it can be said that a longer-lasting structure is obtained at the same filtration capacity.
- ☑ When the MERV test performed on the samples is compared with the ISO 16890 standard, the result of MERV 7 corresponds to the ISO Coarse Filtration >95% classification. Accordingly, a coarse filtering efficiency close to ePM₁₀ was achieved through employing a sustainable lamination method.

REFERENCES

•04Atakan Gumus_Poster NIA 2022 HASSAN Group.indd

- [1] Smart Hvac Systems on Cyber Security and Connection Protocols, Adria Security Summit, 2020, https://www.adriasecuritysummit.com/smart-hvac-systems-on-cybersecurity-and-connection-protocols/
- [2] EN 290 Tests for Textile-Non-Woven fabrics Part 1: Selection of unit area-1. [3] ISO 9073-2 Contents for Textile-Non-Woven things - Part 2: Determination of thickness.
- [4] NWSP 070.1.R0 (20) Air Permeability of Nonwovens.
- [5] TS EN ISO 13934-1 Properties of Textile-Fabrics Part 1: Determination of the highest strength and elongation under the greatest force by method.
- [6] TS EN ISO 13937-2 Textile- Part 2: Properties of samples of fabrics Part 2: Determination of samples of samples of Pantalonki samples (tekma methods). [7] National Air Filtration Association, 2018, Understanding MERV, NAFA User's Guide to ANSI/ASHRAE Standard 52.2-2017, Wisconsin.

HASSAN

MERKAS