

Battery Performances and Thermal Stability of Polypropylene Nonwoven Separator for Li-ion Battery

Opylene Nonwoven Separator for Li-lon Battery

Kaushal Shah¹, Qingyan Peng², Mohanapriya Venkataraman³, Jiri Militky⁴

Introduction

EV Batteries are gold mines for manufacturers, but the world still lacks in battery performance and thermal stability. Now imagine a battery without such limitations, better performance, and better thermal stability, it can be done by changing the battery separator to the following type of separator.

Preparation Method

SEM Image of coating Graphene in PP Nonwoven.

Specification

Thickness (µm)	28
Pore Size (µm)	1.3
Porosity (%)	43
Puncture Strength (g)	290 g/mil
Shrinkage (%)	6% MD
	7% TD
Shutdown temperatur	e
(^{o}C)	134
	Complete wet out in
	typical battery
Wettability	electrolytes
Chemical stability	Stable
Dimensional stability	Stable

Shutdown Behaviour

Cell voltage 0 100 200 300 400 500 Time (sec)

Benefits

Summary

- From shutdown behavior, the separator **exhibited low discharge rate capability** as a result of the significant occlusion of the pores arising from the graphene coating, consequently enhancing battery performance.
- As the nail penetrated and the temperature grew, the voltage dropped from 4.2 to 0.0 V in an instant. When the heating rate is modest, the cell stops heating when the temperature approaches the separator shutdown.

Kaushal Vipul Shah
Technical University of Liberec
kaushal.vipul.shah@tul.cz
+91-7758882534

Acknowledgment

Special thanks to Dr. Fatma Yalcinkaya for her support throughout the project. Also, I would extend my thanks to the team members of the nonwoven and nanomaterial department and the Technical University of Liberec.